Abstract

This article describes the ultraviolet (UV) protection of MgO and Al2O3 nanoparticles embedded electrospun polyacrylonitrile (PAN) nanofibrous mats. UV radiation is a harmful part of sunlight and prolonged exposure to it can cause serious skin damages. In this research, nanofibrous mats consisting of nanofibers with different diameters containing different amounts of MgO, Al2O3, MgO Plus, and Al2O3 Plus nanoparticles were produced, and their UV-protection was measured. The specific surface area of MgO, MgO Plus, Al2O3, and Al2O3 Plus nanoparticles was 230, 600, 275, and 550 m2/g, respectively. The mean diameter of electrospun PAN nanofibers embedded with metal oxide nanoparticles was in the range of 665–337 nm. The results showed that the UV-protection (shielding) capability of the mats strongly depends on fiber diameter; in fact a thin mat of nanofibers has a much stronger UV-protection in comparison to a thicker mat composed of regular fibers. UV transmission is reduced as a result of embedding MgO and Al2O3 nanoparticles in the electrospun PAN nanofibrous mats. MgO Plus and Al2O3 Plus show higher UV-protection than MgO and Al2O3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call