Abstract

NIL (nano-imprint lithography) is expected as one of the lithographic candidates for 32nm node and beyond. Recently, the small line edge roughness (LER) as well as the potentially high resolution that will ensure no-OPC mask feature is attracting many researchers. However, the NIL needs 1X patterns on template and a transit from 4X to 1X is a big and hard technology jump for the mask industry. The fine resolution pattern making on the template is one of the most critical issues for the realization of NIL. In this paper, as a continuation of our previous works<sup>1-5</sup>, we have achieved further resolution by optimizing the materials, their thicknesses, the developing and the etching processes, as well as the writing parameters of the 100keV SB (spot beam) writer. At the best resolved point on the template, resolutions down to hp (half pitch) 18nm on dense line patterns, hp20nm on dense hole patterns, and hp26nm on dense dot patterns were confirmed. Concerning stable pattern resolution over a certain field area, we evaluated pattern resolution through over a 250um square area, which we think would be adequate for initial imprint tests. For the 250&mu;m square area, we confirmed pattern resolution of hp24nm for dense line patterns and hp32nm for dense hole patterns. In addition, we have studied resolution limit of the 50keV VSB (variable shaped beam) photomask production writing tools, which have been commonly used tools in the 4X photomask manufacturing for larger field size patterning. Materials, process conditions and parameters acquired through the 100keV SB process were implanted, and we could fabricate templates with hp32nm dense line patterns, with acceptable full chip uniformity and writing time. We also studied the imprint capability, and fabricated a template with fine features and imprinted it onto a wafer. As a result, we could transfer hp24nm dense line patterns, hp24nm dense hole patterns, and hp32nm dense dot patterns onto the wafer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.