Abstract

To evaluate uveal biocompatibility and capsular bag opacification of a new hydrophobic acrylic microincision intraocular lens (IOL) in comparison with a commercially available 1-piece hydrophobic acrylic IOL. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Eight New Zealand rabbits underwent bilateral phacoemulsification and implantation of the preloaded Nanex multiSert IOL in one eye and a commercially available preloaded lens (AcrySof IQ in UltraSert, model AU00T0) in the contralateral eye. A slitlamp examination was performed weekly for 4 weeks. The rabbits were then killed humanely and their globes enucleated. Capsular bag opacification was assessed from the Miyake-Apple view, and the eyes were subjected to histopathologic evaluation. Postoperative inflammatory reactions were similar between the test and control eyes in the 8 New Zealand rabbits. The mean postmortem central posterior capsule opacification (PCO) was 0.93 ± 0.73 in the test group and 1.19 ± 0.53 in the control group. The mean postmortem peripheral PCO was 1.75 ± 0.92 in the test group and 2.06 ± 0.77 in the control group. Central and peripheral PCO scores were not statistically different between the test and control groups (P = .41 and P = .35, respectively, 2-tailed t test: paired 2-sample for means). A new 1-piece hydrophobic acrylic microincision IOL incorporating an ultraviolet-ozone treatment on the posterior surface performed similarly to a commercially available 1-piece hydrophobic acrylic IOL in terms of uveal and capsular biocompatibility in the rabbit model. To our knowledge, this is the first hydrophobic acrylic microincision IOL to demonstrate similar PCO performance when compared with a conventional, commercially available IOL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call