Abstract

The Voronoi diagram is an important technique for answering nearest-neighbor queries for spatial databases. In this paper, we study how the Voronoi diagram can be used on uncertain data, which are inherent in scientific and business applications. In particular, we propose the Uncertain-Voronoi Diagram (or UV-diagram in short). Conceptually, the data space is divided into distinct “UV-partitions”, where each UV-partition P is associated with a set S of objects; any point q located in P has the set S as its nearest neighbor with non-zero probabilities. The UV-diagram facilitates queries that inquire objects for having non-zero chances of being the nearest neighbor of a given query point. It also allows analysis of nearest neighbor information, e.g., finding out how many objects are the nearest neighbors in a given area. However, a UV-diagram requires exponential construction and storage costs. To tackle these problems, we devise an alternative representation for UV-partitions, and develop an adaptive index for the UV-diagram. This index can be constructed in polynomial time. We examine how it can be extended to support other related queries. We also perform extensive experiments to validate the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.