Abstract

In the present work, UV-curable layers have been exploited for assembling hybrid organic–inorganic Layer by Layer (LbL) coatings, able to enhance the thermo-oxidative stability and flame retardancy of polycarbonate (PC) films (500 μm thick). More specifically, 5 or 10 quad-layers (QL), each consisting of a branched polyethylene imine, negative silica nanoparticles (average diameter: 30 nm), positive alumina-coated silica nanoparticles (average diameter: 10 nm) and a UV-curable acrylic aliphatic polyurethane resin have been assembled on the PC films. The obtained architectures have been eventually exposed to UV radiation in order to crosslink them and to study their durability to washing treatments and to a concentrated ammonia solution. Scanning electron microscopy has shown that the UV-curing process allows forming a continuous and homogeneous coating, as compared to the un-cured counterpart. In addition, UV-cured 5 and 10QL have turned out to be capable to protect PC films from the application of a methane flame (3s) suppressing the dripping, the smoke release and the particulate formation. These coatings have proven to be still efficient also when the samples have been washed at 50 °C for 1 h in deionized water. Indeed, the same performances have been observed on such samples when horizontal flame spread tests have been repeated after washing, thus demonstrating durability features of these LbL architectures. The best results have been achieved when at least 5QL have been deposited on the substrate and subjected to UV-curing. Thus, the combination of LbL assembly and UV-curing may represent an effective way for obtaining durable flame retardant coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.