Abstract

Melanogenesis is the physiological process by which melanin is synthesized to protect the skin from UV damage. While paracrine interactions between keratinocytes and melanocytes are crucial for regulating epidermal pigmentation, the endothelin (EDN)-endothelin B-receptor (EDNRB) interaction is one of the key linkages. In this study, we found that a single exposure of normal human melanocytes (NHMs) with UVB stimulates the expression of EDNRB and its upstream transcription factor microphthalmia-associated transcription factor (MITF) at the transcriptional and translational levels. That stimulation can be abrogated by post-irradiation treatment with a French maritime pine bark extract (PBE). UVB stimulated the phosphorylation of p38 and c-jun N-terminal kinase (JNK), but not ERK, followed by the increased phosphorylation of MSK1 and CREB. The post-irradiation treatment with PBE did not affect the increased phosphorylation of p38 and JNK, but distinctly abrogated the phosphorylation of MSK1 and CREB. Post-irradiation treatment with the MSK1 inhibitor H89 significantly down-regulated the increased gene expression of MITF and EDNRB in UVB-exposed NHMs. Our findings indicate for the first time that the increased expression of MITF that leads to the up-regulation of melanocyte-specific proteins in UVB-exposed NHMs is mediated via activation of the p38/MSK1/CREB pathway but not the ERK/RSK/CREB pathway. The mode of action by PBE demonstrates that interrupting MSK1 activation is a new target for antioxidants including PBE which can serve as anti-pigmenting agents in a reactive oxygen species-depletion-independent manner.

Highlights

  • Melanogenesis is the physiological process by which melanin is synthesized in melanocytes located in the basal layer of the epidermis to protect the skin from UV irradiation

  • UVB stimulates the expression of EDNRB in normal human melanocytes (NHMs), which is abrogated by post-irradiation treatment with pine bark extract (PBE)

  • We found that a single exposure of NHMs by UVB stimulates EDNRB expression

Read more

Summary

Introduction

Melanogenesis is the physiological process by which melanin is synthesized in melanocytes located in the basal layer of the epidermis to protect the skin from UV irradiation. UVB-exposed keratinocytes secrete cytokines and growth factors, including endothelin (EDN) 1 [1,2,3,4,5], that stimulate cellular functions, especially proliferation and melanization, of adjacent melanocytes in the epidermis. The corresponding specific receptors are constitutively expressed by human melanocytes and the binding of cytokines and growth factors to their receptors transduces intracellular signals to initiate melanogenesis through specific signaling cascades [6]. In UVB-exposed human melanocytes, the p38 pathway predominantly contributes to the increased expression of microphthalmia-associated transcription factor (MITF) [7], a master regulator of melanocyte functions, including differentiation [8,9,10], proliferation [11,12,13,14], survival [15, 16] and melanogenesis [17, 18]. MITF regulates the expression of many melanogenic enzymes, melanosome structural proteins, transporters and receptors, such as tyrosinase, tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT), melanosomal protein 17 (PMEL17), melanoma antigen recognized by T-cells 1 (MART1) and endothelin B-receptor (EDNRB) [19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call