Abstract
The carcinogenic action of UVA radiation is commonly attributed to DNA oxidation mediated by endogenous photosensitisers. Yet, it was recently shown that cyclobutane pyrimidine dimers (CPD), well known for their involvement in UVB genotoxicity, are produced in larger yield than oxidative lesions in UVA-irradiated cells and skin. In the present work, we gathered mechanistic information on this photoreaction by comparing formation of all possible bipyrimidine photoproducts upon UVA irradiation of cells, purified genomic DNA and dA(20):dT(20) oligonucleotide duplex. We observed that the distribution of photoproducts, characterized by the sole formation of CPD and the absence of (6-4) photoproducts was similar in the three types of samples. The CPD involving two thymines represented 90% of the amount of photoproducts. Moreover, the yields of formation of the DNA lesions were similar in cells and isolated DNA. In addition, the effect of the wavelength of the incident photons was found to be the same in isolated DNA and cells. This set of data shows that UVA-induced cyclobutane pyrimidine dimers are formed via a direct photochemical mechanism, without mediation of a cellular photosensitiser. This is possible because the double-stranded structure increases the capacity of DNA bases to absorb UVA photons, as evidenced in the case of the oligomer dA(20):dT(20). These results emphasize the need to consider UVA in the carcinogenic effects of sunlight. An efficient photoprotection is needed that can only be complete by completely blocking incident photons, rather than by systemic approaches such as antioxidant supplementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.