Abstract
Ultraviolet-A and melanin are implicated in melanoma, but whether melanin in vivo screens or acts as a UVA photosensitiser is debated. Here, we investigate the effect of UVA-irradiation on non-pigmented, lightly and darkly pigmented melanocytes and melanoma cells using electron spin resonance (ESR) spectroscopy. Using the spin trap 5,5 Dimethyl-1-pyrroline N-oxide (DMPO), carbon adducts were detected in all cells. However, higher levels of carbon adducts were detected in lightly pigmented cells than in non-pigmented or darkly pigmented cells. Nevertheless, when melanin levels were artificially increased in lightly pigmented cells by incubation with L-Tyrosine, the levels of carbon adducts decreased significantly. Carbon adducts were also detected in UVA-irradiated melanin-free cell nuclei, DNA-melanin systems, and the nucleoside 2′-deoxyguanosine combined with melanin, whereas they were only weakly detected in irradiated synthetic melanin and not at all in irradiated 2′-deoxyguanosine. The similarity of these carbon adducts suggests they may be derived from nucleic acid– guanine – radicals. These observations suggest that melanin is not consistently a UVA screen against free-radical formation in pigmented cells, but may also act as a photosensitizer for the formation of nucleic acid radicals in addition to superoxide. The findings are important for our understanding of the mechanism of damage caused by the UVA component of sunlight in non-melanoma and melanoma cells, and hence the causes of skin cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.