Abstract

In this study, 3-amino-4-hydroxybenzenesulfonic acid-based imine compounds; 3-(2,5-dihydroxybenzylideneamino)-4-hydroxybenzenesulfonic acid (1), 3-(2,4-dihydroxybenzylideneamino)-4-hydroxybenzenesulfonic acid (2) and 4-hydroxy-3-(2-hydroxy-3-methoxybenzylideneamino)-4-hydroxybenzenesulfonic acid (3) was synthesized. The compounds were analyzed using various spectroscopy methods, and the experimental UV–vis data matched the theoretical predictions. The compound 1 displayed lower stability, higher reactivity, and easier photoexcitation due to a smaller HOMO-LUMO energy gap. The investigated compounds 1-3 showed promise as chemosensors for anions, providing visible detection in daylight conditions. The compound 3 exhibited selective fluorescence at specific wavelengths. The compounds 1-3 interacted with DNA through electrostatic interactions. Also, compounds 1-3 showed higher antioxidant activity than BHT. However, fluorescence measurements indicated that the emission signals were strongly influenced by the position and strength of the electron-donating group. Adding a hydroxy or methoxy moiety near the -OH group on the phenyl ring decreased the fluorescence signal due to intersystem crossing and intramolecular charge transfer mechanisms, respectively. These findings were supported by femtosecond transient absorption spectroscopy measurements. The results emphasize the significance of substituents in imines derived from 3-amino-4-hydroxybenzenesulfonic acid in determining their biological activities, as well as their optical and sensor properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call