Abstract
The photocatalytic degradation of nitrobenzene (NB) under UV–VIS irradiation with un-doped TiO2 and various heavy metals doped TiO2 powders were studied for aerated solutions. The dopant type (Fe, Co, Ni) and its concentration (0.5–5wt.% TiO2) influence on pollutant degradation efficiency were investigated. The photocatalyst with lowest Fe content (0.5wt.%) showed a considerable better behaviour in respect to pollutant degradation than catalyst with higher Fe content and Co and Ni doped titania catalysts. The experiments were carried out for solutions with (0.37–8.45)×10−4M NB initial content, using 50–250mg/L catalyst dose, at various pHs (4–10) and irradiation time between 30 and 240min. The kinetics of NB degradation and organic nitrogen mineralization was assessed and pseudo-first order rate constants were calculated. For optimum working conditions (0.5wt.% Fe doped-TiO2 loading of 250mg/L, 2.52×10−4M pollutant initial concentration, pH=7 and 240min irradiation time) NB removal and organic nitrogen mineralization efficiencies were 99% and 85%, respectively. It was also demonstrated that degradation process occurs on catalyst surface, so experimental results are in accordance with Langmuir–Hinshalwood model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.