Abstract
The UV stability of Si solar cells passivated by low-temperature remote PECVD silicon nitride films is tested. Perfect stability of the front surface passivation and the rear surface passivation of both p-n junction as well as MIS-IL Si solar cells is observed. Using the microwave-detected photoconductance decay (MW-PCD) method, a very small and slow degradation of the differential effective surface recombination velocity S/sub eff.d/ is observed at silicon nitride-passivated p-Si surfaces corresponding to the nonmetallized rear surface regions of bifacial cells. However, the degradation is too small to have any impact on the long-term stability of encapsulated 17-18% rear efficient bifacial cells. Thin-silicon-oxide/silicon-nitride double layers incorporating Cs as used at the front surface of MIS-IL solar cells provide perfectly stable and excellently low differential S/sub eff.d/ values of 23 cm/s on 1.5-/spl Omega/cm wafers. Applied to the rear surface of bifacial Si solar cells, this double-layer scheme gives the potential of stable rear efficiencies of even 20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.