Abstract
As a noninvasive molecular analysis technique, ultraviolet resonance Raman (UVRR) spectroscopy represents a label-free method suitable for characterizing biomolecules. Using UVRR spectroscopy, we collected spectral fingerprints of UV absorbing cellular components, including proteins, nucleic acids, and unsaturated lipids. This knowledge was used to guide the assignment of spectra derived from intact human cell lines (i. e., HSC-3 and HaCaT) and from the apoptotic events induced by cisplatin. Notably, a jet-flow system was employed to generate flowing cell suspensions during UVRR measurements, minimizing UV-induced damage. A spectral marker is established based on the ratio of Raman intensities at 1488 and 1655 cm-1 ; this ratio correlates to the level of cell death due to apoptosis. Collectively, this work demonstrates that UVRR spectroscopy is a sensitive and informative probe of cellular physiology and molecular composition. The molecular insight obtained from UVRR measurements can be used to improve understanding of therapeutic treatment and to guide drug development and the choice of therapeutic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.