Abstract

The UV protection and singlet oxygen quenching of aloesaponarin I have been studied by means of laser spectroscopy. The excited-state intramolecular proton transfer that provides the UV protection takes place along only one of the molecule's two intramolecular hydrogen bonds, and this can be understood by considering the nodal pattern of the wave function. The functional groups participating in the excited-state intramolecular proton transfer also play important roles in the singlet oxygen quenching. Aloesaponarin I has a quenching rate constant larger than that of vitamin E and has a long duration of action due to its resistance to UV degradation and chemical attacks by singlet oxygen and free radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.