Abstract

UV photolysis of caged molecules is a powerful method for studying cellular signaling. However, UV energy is often delivered through the microscope objective which can make certain experiments difficult. We have evaluated the utility of delivering UV pulses directly to the sample through an optical fiber. Visible (635 nm) and UV (337 nm) lasers were coupled into a UV transmitting optical fiber which was micromanipulated over the sample under investigation. Positioning of the fiber, and thus the photolysis beam, was achieved using the visible laser which acted much like a flashlight. By controlling the size of the optical fiber it is also possible to control the area of the sample which is exposed to UV light. After positioning the fiber we demonstrate that the UV beam exiting the optical fiber reliably photolysed NP-EGTA that had been loaded into cells, resulting in an elevation of intracellular calcium. Additionally, caged norepinephrine in the bathing saline was photo-released to activate receptor-operated calcium signaling pathways. Since the delivery of the UV energy is independent of microscope configuration, this approach can be readily incorporated into wide-field fluorescence imaging, confocal microscopy and electrophysiological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.