Abstract
The electronic structure of Blatter radicals and a series of C(10)-substituted derivatives of 2-phenyl-3H-[1,2,4]triazino[5,6,1-kl]phenoxazin-3-yl (planar Blatter radicals) containing H, F, Cl, Br, CN, CF3 and OMe substituents was investigated by gas phase UV-photoelectron spectroscopy. The energy of the SOMO of the radicals, determined to be about 6.5 eV, was correlated with their electrochemical oxidation potentials, E0/+11/2, relative to the Fc/Fc+ couple in CH2Cl2 giving the correction of 6.60(1) eV. The optical band gap Eoptg ∼ 1.7 eV of the radicals yielded the electronic transport gap, Eelg, of about 2.1 eV, which is similar to the electronic parameters of pentacene. The radicals were analyzed by EPR spectroscopy and single crystal XRD methods, and all experimental data were compared to DFT computational results obtained at the CAM-B3LYP/6-311G(d,p) level of theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.