Abstract

Culturing pluripotent stem cells effectively requires substrates coated with feeder cell layers or cell-adhesive matrices. It is difficult to employ pluripotent stem cells as resources for regenerative medicine due to risks of culture system contamination by animal-derived factors, or the large costs associated with the use of adhesive matrices. To enable a coating-free culture system, we focused on UV/ozone surface modification and atmospheric pressure plasma treatment for polystyrene substrates, to improve adhesion and proliferation of pluripotent stem cells. In this study, to develop a feeder- and matrix coating-free culture system for embryonic stem cells (ESCs), mouse ESCs were cultured on polystyrene substrates that were surface-modified using UV/ozone-plasma combined treatment. mESCs could be successfully cultured under feeder-free conditions upon UV/ozone-plasma combined treatment of culture substrates, without any further chemical treatments, and showed similar proliferation rates to those of cells grown on the feeder cell layer or matrix-coated substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.