Abstract

The normal and UV near-resonance Raman (UVRR) spectra of 1,1'-bi-2-naphthol (BN) in basic solution were measured and analyzed. Density functional theory (DFT) calculations were carried out to study the ground state geometry structure, vibrational frequencies nu, off-resonance Raman intensities I, and depolarization ratios rho of 1,1'-bi-2-naphtholate dianion (BN(2-)). On the basis of the calculated and experimental results of nu, I, and rho, the observed Raman bands were assigned in detail. The 1612 cm(-1) Raman band of BN in basic solution was found dramatically enhanced in the UV resonance Raman spectrum in comparison with the normal Raman spectrum. Analyzing the depolarization ratios of the 1366 and 1612 cm(-1) bands in the RR spectra manifests that both the symmetric and antisymmetric parts of transition polarizabilities contribute to the 1366 cm(-1) band, but that only the symmetric part contributes to the 1612 cm(-1) band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call