Abstract

ZnO infiltration technology was developed by chemical deposition from solution in to a three-dimensional opal lattice, samples of the ZnO - opal composites were prepared with the predominating UV - emission at room temperature. The embedding degree was checked up by the sample weight and by the shift of the spectral position of the reflection maximum (stop band). The both ways were in accordance with one another. The optimal synthesis conditions of the ZnO-filled opals were defined for the maximal intensity of the UV-luminescence. It is shown the use of the "raw" opals and incomplete filling of the pores by semiconducting material increase the edge excitonic emission by several times at room temperature. Angular dependences of the photoluminescence and reflectance spectra of the ZnO-infiltrated opal have been studied. These results can be used to create effective laser light sources in UV spectral range using "photonic crystal" effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.