Abstract

trans-Resveratrol is an antioxidant that readily isomerizes to the cis isomer under UV irradiation. Here we report on the UV-Visible analysis of the stability of both trans- and cis-resveratrol isomers in the presence of UV light over a pH range of 2.0–9.0 in a phosphate-borate buffer that contains sodium dodecyl sulphate and acetonitrile. The molar absorptivity of the trans-resveratrol solution absorbing at 320 nm (3.88 eV) and 305 nm (4.07 eV) was 33000 and 34000 M–1 cm–1, respectively. Results indicate that trans-resveratrol has a slower isomerization within a pH range of 5.0–8.0. A pH > 8.0 results in almost immediate isomerization of the sample, whereas at pH 2.0 a photo-degradation product appears at 260 nm (4.77 eV). This was not apparent at pH 8.0. By including trans-resveratrol into a trans-resveratrol/α-cyclodextrin host–guest inclusion complex in pH 8.0 buffer isomerization was greatly reduced, with enhanced trans-resveratrol photostability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.