Abstract

The use of DNA as a template has been demonstrated as an effective method for synthesizing different-sized silver nanoclusters. Although DNA-templated silver nanoclusters show outstanding performance as fluorescent probes for chemical sensing and cellular imaging, the synthesis of DNA-stabilized gold nanoclusters (AuNCs) with high fluorescence intensity remains a challenge. Here a facile, reproducible, scalable, NaBH4-free, UV-light-assisted method was developed to prepare AuNCs using repeats of 30 adenosine nucleotides (A30). The maximal fluorescence of A30-stabilized AuNCs appeared at 475 nm with moderate quantum yield, two fluorescence lifetimes, and a small amount of Au(+) on the surface of the Au core. Results of size-exclusion chromatography revealed that A30-stabilized AuNCs were more compact than A30. A series of control experiments showed that UV light played a dual role in the reduction of gold-ion precursors and the decomposition of citrate ions. A30 also acted as a stabilizer to prevent the aggregation of AuNCs. In addition, single-stranded DNA (ssDNA) consisting of an AuNC-nucleation sequence and a hybridization sequence was utilized to develop a AuNC-based ratiometric fluorescent probe in the presence of the double-strand-chelating dye SYBR Green I (SG). Under conditions of single-wavelength excitation, the combination of AuNC/SG-bearing ssDNA and perfectly matched DNA emitted fluorescence at 475 and 525 nm, respectively. The formed AuNC/SG-bearing ssDNA enabled the sensitive, selective, and ratiometric detection of specific nucleic acid targets. Finally, the AuNC-based ratiometric probes were successfully applied to determine specific nucleic acid targets in human serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.