Abstract

In the present work, some recent results are presented concerning the use of UV laser reduction of fluorinated graphene and graphene oxide in order to modify their optical and nonlinear optical properties in a controlled way. The photo-reduction was achieved using 355 nm UV light from a 4 ns Nd:YAG laser, while the NLO properties of the derivatives were studied by means of the Z-scan technique, employing 4 ns, visible (532 nm) laser excitation. It is shown that the modification of the degree of oxidation/fluorination of the two graphene derivatives, can greatly alter their optical and their nonlinear optical response. The present results demonstrate the efficiency of the reduction by UV laser light, for the efficient modulation and tuning of the nonlinear response of graphene oxide and fluorinated graphene in view of specific applications in photonics and optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.