Abstract

A triblock copolymer, poly(ethylene glycol)-b-poly(glycerol monomethacrylate)-b-poly(2-(diethylamino)ethyl methacrylate) (PEG−PGMA−PDEA), was synthesized via atom transfer radical polymerization (ATRP) by successive polymerization of glycerol monomethacrylate (GMA) and 2-(diethylamino)ethyl methacrylate (DEA) using a PEG-based ATRP macroinitiator. Reacting the obtained triblock copolymer with varying amounts of cinnamoyl chloride in anhydrous pyridine yielded PEG−(PCGMA-co-PGMA)−PDEA triblock copolymer with photo-cross-linkable moieties, where PCGMA is poly(3-cinnamoyl glycerol monomethacrylate) and the mean degree of cinnamoylation ranges from 5 to 50 mol % relative to the PGMA block. All PEG−(PCGMA-co-PGMA)−PDEA triblock copolymers molecularly dissolve in aqueous media at acidic pH; upon addition of NaOH, micellization occurred above pH 7−8 to form three-layer “onionlike” micelles comprising PDEA cores, PCGMA-co-PGMA inner shells, and PEG outer coronas. The pH-induced micellization kinetics of PEG113−(C...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.