Abstract
Archaea, like bacteria and eukaryotes, contain proteins involved in various mechanisms of DNA repair, highlighting the importance of these processes for all forms of life. Species of the order Sulfolobales of hyperthermophilic crenarchaeota are equipped with a strongly UV-inducible type IV pilus system that promotes cellular aggregation. Here we demonstrate by fluorescence in situ hybridization that cellular aggregates are formed based on a species-specific recognition process and that UV-induced cellular aggregation mediates chromosomal marker exchange with high frequency. Recombination rates exceeded those of uninduced cultures by up to three orders of magnitude. Knockout strains of Sulfolobus acidocaldarius incapable of pilus production could not self-aggregate, but were partners in mating experiments with wild-type strains indicating that one cellular partner can mediate the DNA transfer. Since pilus knockout strains showed decreased survival upon UV treatment, we conclude that the UV-inducible DNA transfer process and subsequent homologous recombination represents an important mechanism to maintain chromosome integrity in Sulfolobus. It might also contribute substantially to the frequent chromosomal DNA exchange and horizontal gene transfer in these archaea in their natural habitat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.