Abstract
Monomeric 3,6-dithiopyridazine (3-mercapto- 6(1H)-pyridazinethione) was studied using the matrix-isolation method combined with quantum chemical calculations. The monomers of 3,6-dithiopyridazine, trapped from the gas phase into a low-temperature Ar matrix, were found to adopt the thione-thiol structure. In agreement with this experimental observation, the thione-thiol form was predicted (at the QCISD level) to be more stable by 13.5 kJ mol(-1) and by 39.6 kJ mol(-1) than the dithiol and the dithione tautomers, respectively. Monomers of 3,6-dithiopyridazine isolated in Ar matrixes were then irradiated with broadband UV (λ > 335 nm) light. Upon such irradiation, the thione-thiol form of the compound converted into the dithiol tautomer. The same phototransformation was observed when monochromatic λ = 385 nm laser light was used for irradiation. This allowed a first observation and spectral characterization of the dithiol form of 3,6-dithiopyridazine. Subsequent irradiation of the UV-generated dithiol tautomer with shorter-wavelength UV (λ > 275 nm) light led to partial repopulation of the thione-thiol form. Spectral signatures of the analogous photoreversibility were also found for the phototautomeric transformation in the model compound 3-thiopyridazine. The reliability of the QCISD predictions of relative energies of thiol and thione tautomeric forms was tested on the archetype example of 2-thiopyridine. For this compound, the comparison of the computed relative energy 10.9 kJ mol(-1) with the experimental estimate 10.0 ± 1.5 kJ mol(-1) (both in favor of the thiol form) was more than satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.