Abstract

UV laser excitation of cryogenic solids doped with cyanoethyne, HC(3)N, led to an in situ creation of longer carbon-nitrogen chains, namely HC(5)N, C(4)N(2), and C(6)N(2), heralded by their strong visible luminescence. HC(5)N and C(4)N(2) molecules can form, most probably, within HC(3)N aggregates linked by hydrogen bonds, while the reaction occurring between two isolated, photochemically created C(3)N radicals yields C(6)N(2). This latter species, dicyanobutadiyne, is easily detected in Ar, Kr, N(2), as well as in parahydrogen solids. The C(6)N(2) phosphorescence is identified here for the first time. The reported carbon chain coupling reactions in rigid environments are of interest for astrochemistry of interstellar ices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call