Abstract

Monomers of allopurinol and 9-methylhypoxanthine were studied using the matrix isolation technique combined with Fourier transform infrared spectroscopy. The oxo tautomeric forms of both compounds were found to dominate in freshly deposited low-temperature argon matrices. For 9-methylhypoxanthine, a small amount of the hydroxy tautomer was also detected in an Ar matrix before any irradiation. Upon exposure of the matrices to the UV ( λ > 230 nm or λ > 270 nm) light, a proton transfer photoreaction converting the oxo forms of both compounds into the corresponding hydroxy tautomers occurred. Generation of conjugated ketenes as minor photoproducts was also observed. For 4( 3H)-pyrimidinone (a model compound for both allopurinol and 9-methylhypoxanthine), photoreversibility of the UV-induced oxo → hydroxy transformation was experimentally proven by direct observation of the back hydroxy → oxo photoreaction. The substrates (oxo tautomers) and products (hydroxy tautomers) of the observed phototransformations were identified by comparison of their IR spectra with the spectra theoretically predicted at the DFT(B3LYP)/6-31++G(d,p) level. The IR bands in the experimental spectra were assigned to the calculated normal modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.