Abstract

Repair of UV induced DNA damage is of key importance to UV-induced skin carcinogenesis. Specific signal transduction pathways that regulate cell cycling, differentiation and apoptosis are found to be corrupted in skin cancers, e.g., the epidermal growth-stimulating Hedgehog pathway in basal cell carcinomas (BCCs). Mutations in genes coding for proteins in these pathways lead to persistent disturbances that are passed along to daughter cells, e.g., mutations in the gene for the Patched (PTCH) protein in the Hedgehog pathway. Thus far only the point mutations in the P53 gene from squamous cell carcinomas and BCCs, and in PTCH gene from BCC of xeroderma pigmentosum (XP) patients appear to be unambiguously attributable to solar UV radiation. Solar UVB radiation is most effective in causing these point mutations. Other forms of UV-induced genetic changes (e.g., deletions) may, however, contribute to skin carcinogenesis with different wavelength dependencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.