Abstract

The dissipation factor of aluminum nitride ceramics (AlN), doped with various concentrations of oxygen, is probed at 1 kHz before and after exposure to UV radiation. The results of this study show that UV photogenerated carriers, which are trapped at charged oxygen impurity related defect sites, are responsible for the observed dielectric loss. A simple energy level diagram is presented that outlines trapped carrier distributions within the AlN bandgap and is consistent with the experimentally observed changes in dissipation factor as a function of time, UV exposure, and exposure to visible light, which liberates carriers from charged trap sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.