Abstract

The UV-induced photocoloration of cubic zirconia (c-ZrO2) stabilized by Y2O3, Yb2O3 and Er2O3 and treated as a wide bandgap metal oxide (MO2) heavily doped with M3+ ions has been examined by diffuse reflectance spectroscopy. Using the narrow f-f absorption bands of optically labeled Yb3+ and Er3+ as the M3+ dopants, the interaction of these dopant ions with photocarriers is demonstrated spectroscopically against a non-resolved broadband background. The latter occurs as a result of an offset of specific f-f absorption bands following conversion of M3+ ions into optically silent M2+ ions by the trapping of photoelectrons or by a change of the local symmetry of the M3+ surroundings caused by the UV-induced formation of color centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.