Abstract

UV photon induced assembly of ω-alkenyl terminated gold nanoparticles (AuNPs) on pre-defined sites of crystalline silicon surface through covalent interaction is demonstrated. Highly ordered and stable hexadecyl monolayer on oxide free silicon surface is used to construct the photopattern and then the linear patterns of hydrogen-terminated sites were effectively used to assemble AuNPs by UV induced hydrosilylation. This approach is entirely based on oxide free interfaces, where both robust organic monolayer and AuNPs are assembled in a linear fashion. The developed strategy promises immense potential to miniaturize silicon based devices for technological applications, where electron coupling between the nanoparticles and the silicon surface is very significant. This work further paving the new direction to immobilize various types of nanoparticles in different architecture on oxide free crystalline silicon surface to exploit their utilization in technological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call