Abstract

Strongly acidic wastewater generated from nonferrous metal smelting industries can be recycled as sulfuric acid after the contaminants have been removed, and among which, Cl- is rather difficult to remove. Although previous studies showed that Cl- can be removed from acidic Zn electrolyte by Bi2O3, this method still suffers from low efficiency when being employed for strongly acidic wastewater recycling. Otherwise, very high Bi2O3 dosage and H2SO4 concentration are required, leading to the need for improvement. In this study, UV irradiation was employed to improve the removal, and it was found that Cl- removal efficiency was substantially enhanced from 63.9 to 98.3%, the optimum Bi2O3/Cl- mole ratio was lowered from 1.5:1 to 0.5:1, and to achieve the maximum removal efficiency, the required H2SO4 concentration was lowered from 70 to 40 g/L. The mechanisms were also elaborated. First, Bi2O3 dissolves under the function of UV and H+, and the produced Bi3+ combines with H2O and Cl- to form BiOCl. Then, Bi2O3/BiOCl transforms into BiOCl(h+)/Bi2O3(e-) under UV irradiation, and the generated h+ oxidizes Cl- to Cl•. Finally, Cl• reacts with Bi2O3/e- to produce BiOCl. This study offered a theoretical foundation for the improvement of Cl- removal from strongly acidic wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.