Abstract

In this work, we report on UV illumination-enhanced room-temperature trace NH3 detection based on ternary composites of reduced graphene oxide nanosheets (rGO), titanium dioxide nanoparticles (TiO2), and Au nanoparticles as the sensing layer, which is the first reported so far. The effect of the UV state as well as componential combination and content on the sensing behavior disclosed that rGO nanosheets served not only as a template to attach TiO2 and Au but also as an effective electron collector and transporter, TiO2 nanoparticles acted as a dual UV and NH3 sensitive material, and Au nanoparticles could increase the sorption sites and promote charge separation of photoinduced electron-hole pairs. The as-prepared rGO/TiO2/Au sensors were endowed with a sensing response of 8.9% toward 2 ppm of NH3, a sensitivity of 1.43 × 10-2/ppm within the investigated range, nice selectivity, robust operation repeatability, and stability, which was fairly competitive in comparison with previous work. Meanwhile, the experimental results provided clear evidence of inspiring UV-enhanced gas detection catering for the future demand of low power-consumption and high sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.