Abstract

A p-ZnO:Cu/n-GaN heterojunction light emitting diode (LED) is fabricated by growing cross-connected p-ZnO:Cu nanobushes on n-GaN film using chemical vapor deposition under oxygen-rich condition. This LED emits stable UV-free red light of 677 nm and 745 nm. The electroluminescence (EL) light of this LED is tuned from ultraviolet (UV) of ZnO/GaN to UV-free red by the electronic interfacial transition from the conduction band of n-GaN to the deep acceptor levels of p-ZnO:Cu. Both room temperature and low temperature (5K) photoluminescence spectra of ZnO:Cu indicate that the UV emission of ZnO is suppressed and the green emission is enhanced, which implies the formation of Cu-related deep levels introduced by intentionally doping Cu in ZnO. These deep levels help the EL red emission in the LED device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call