Abstract

Purpose Radiation therapy for cancer is limited by damage to surrounding normal tissues, and failure to completely eradicate a tumor. This study investigated a novel radiosensitizer, composed of lutetium phosphate nanoparticles doped with 1% praseodymium and 1.5% neodymium cations (LuPO4:Pr3+,Nd3+). During X-ray exposure, the particles emit UVC photons (200–280 nm), resulting in increased tumor cell death, by oxygen-independent UVC-induced damage. Methods and Materials Specially designed LuPO4:Pr3+,Nd3+ nanoscintillator particles were characterized by dynamic light scattering, TEM and emission spectroscopy upon excitation. Cell death was determined by reduction in tumor spheroid growth over a 3-week period using a 3 D A549 lung cancer model. Cell cycle was evaluated by flow cytometry and cell death pathways were assessed by Annexin V/PI stain as well as quantify apoptotic bodies. Results Lung cancer cells expressed no long-term or nonspecific toxicity when incubated with LuPO4:Pr3+,Nd3+ nanoscintillators. In contrast, there was significant growth inhibition of cell spheres treated with 2.5 mg/ml LuPO4:Pr3+,Nd3+ in combination with ionizing radiation (4 or 8 Gy X-ray), compared to radiation alone. Homogeneous distribution of small NPs throughout the entire sphere resulted in more pronounced lethality and growth inhibition, compared to particle distribution limited to the outer cell layers. Growth inhibition after the combined treatment was caused by necrosis, apoptosis and G2/M cell cycle arrest. Conclusions Newly designed UVC-emitting nanoscintillators (LuPO4:Pr3+,Nd3+) in combination with ionizing radiation cause tumorsphere growth inhibition by inducing cell cycle arrest, apoptosis and necrosis. UVC-emitting nanoparticles offer a promising new strategy for enhancing local tumor response to ionizing radiation treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call