Abstract

The present study demonstrates the manufacturing of macroporous hydroxyapatite (HA) scaffolds, comprised of microporous hollow filaments with high shape retention, by UV curing-assisted 3D plotting using a feedrod comprised of a photocurable HA shell and a carbon black (CB) core. Two types of scaffolds with different filament interspaces (0.5 mm and 1 mm) were produced by depositing core-shelled filaments extruded through a 1.07-mm-diameter nozzle with in situ polymerization process. Both scaffolds exhibited that the hollow HA filaments were produced after the removal of CB core by heat-treatment, while micropores in the HA walls were created as the replica of camphene-camphor crystals. Overall porosity and macroporosity obtained using a camphene-camphor content of 60 vol% increased from 74.3 vol% to 79.3 vol% and from 50.7 vol% and 64.6 vol%, respectively, with an increase in filament interspace sizes from 0.5 mm to 1 mm. Both scaffolds exhibited reasonably high compressive strengths (2.36 ― 3.58 MPa) and modulus (68–86 MPa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.