Abstract

UV-cured cross-linked polymer electrolytes are promising electrolytes for safe Li-ion batteries (LIBs) application due to their excellent conduction ability, low glass-transition temperature (Tg), and high discharge capacity. Herein, we have prepared novel fluorosulfonylimide methacrylic-based cross-linked polymer electrolyte membranes for LIBs via UV-curing process, which is a well-known, easy, low-cost, fast, and reliable technique. The synthesized UV-reactive novel methacrylate monomer with directly attached fluorosulfonylimide functional group methacryloylcarbamoyl sulfamoyl fluoride (MACSF) was used as a precursor for UV curing along with poly(ethylene glycol) dimethacrylate (PEGDMA) and lithium bis(fluorosulfonyl)imide (LiFSI). The results demonstrated that the cross-linked membrane with an optimized amount (30 wt %) of MACSF monomer (noted as CPE-3) showed the best performance. The nonflammable fluorosulfonyl group (a hydrophilic group of MACSF monomer) in the polymer matrix formed a wide channel, as a result of which Li ion can migrate easily via forming an ionic linkage. The CPE-3 electrolyte exhibited a low Tg (-79 °C), excellent phase separation, high conductivity (σ) (ca. 3.5 × 10-4 and 8.50 × 10-3 S·cm-1 at 30 and 80 °C, respectively), and high flame retardancy. The battery performance of half-cell (LiFePO4/CPE-3/Li) and full cell (LiFePO4/CPE-3/graphite) with CPE-3 electrolyte were attractive: discharge capacities (155 and 152 mAh/g) with the capacity retentions of 96.17 and 95.17% after 500 cycles at 0.1 C rate for half-cell and full-cell LIBs, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.