Abstract

With the increasing occurrences of industrial oily wastewater emissions and oil spills, considerable efforts have been made to develop superhydrophobic materials for oil–water separation. Herein, we report a facile dipping-UV curing approach to fabricate superhydrophobic organosilicon/silica hybrid coating with crosslinked network structure on cotton fabric via thiol-ene reaction between thiol-functionalized silica nanoparticles (SH-SiO2 NPs) and acryloyloxy-terminated polydimethylsiloxane (A-PDMS-A). With the optimized mass ratio of SH-SiO2 NPs to A-PDMS-A at 0.2, the water contact angle of the fabric reached 155° and the water sliding angle was 8°, exhibiting excellent water repellency. Furthermore, the superhydrophobic cotton fabric possessed self-cleaning ability and good surface stability. In addition, the fabric was successfully applied for effective oil–water separation, and the separation efficiency reached up to 99.06%. Even after 15 cycles, the separation efficiency still maintained 98.93%, demonstrating excellent reusability. Our findings stand out as a new tool to fabricate UV-curable superhydrophobic coating on cotton fabric for efficient oil–water separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.