Abstract

In this study 2-acrylamido-2-methylpropanesulfonic acid (AMPS) containing UV curable nanocomposite membranes were prepared by using the sol–gel method. Tetraethylorthosilicate (TEOS), and 3-(methacryloyloxy)propyl trimethoxysilane (MAPTMS) were used, respectively as an inorganic precursor and coupling agent. Cross linking agents such as poly(ethylene glycol diacrylate) (PEGMA) and ethylene glycol dimethacrylate (EGDMA) were used to arrange the mechanical and physical properties of the resulting hybrid membrane. The hybrid formulation polymerized under UV irradiation and the gel percentage, water uptake of the membranes were calculated. The polymerization conversion of the organic part was investigated by using photo-differential scanning calorimetry (photo-DSC). The thermal and mechanical properties of the membranes indicated good stability. The morphological structure of membranes was investigated by scanning electron microscopy (SEM). In addition proton conductivity and methanol selectivity measurements were performed. The proton conductivity of the AMPS20–SOLGEL30 nanocomposite membrane is about 0.138 S cm −1 at 50 °C. Selectivity toward methanol for the same membrane is very low with a selectivity factor of α = 0.032, which satisfies the requirements for DMFC applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.