Abstract

AbstractBACKGROUND: UV‐curable coatings are promising candidates for environmentally friendly marine fouling‐release coatings. Cationic UV‐curable epoxy‐siloxane release coatings show good release performance but suffer from poor coating mechanical properties. A difunctional oxetane monomer, DOX, was co‐photopolymerized with an epoxy‐siloxane oligomer at loading levels from 10 to 40 wt% to obtain toughened fouling‐release coatings.RESULTS: The DOX‐toughened coatings showed enhanced cationic photopolymerization activity, solvent resistance and modulus. DOX‐toughened coatings (10 and 20 wt%) exhibited higher impact resistance. The DOX‐toughened coatings showed no leachate toxicity and the coatings were hydrophobic and non‐toxic to biofilm growth when analyzed with marine bacteria and algae. In general, 10 and 20 wt% DOX‐toughened coatings exhibited better marine bacteria and algae fouling‐release performance among the DOX‐toughened coatings. Pseudo‐barnacle shear release stress for the DOX‐toughened coatings increased with increasing DOX content. Live barnacle reattachment assay showed that 10 and 20 wt% DOX‐toughened coatings had comparable barnacle removal stress to commercial silicone reference coatings.CONCLUSIONS: DOX‐toughened (10 and 20 wt%) UV‐curable epoxy‐siloxane coatings exhibited enhanced mechanical properties and better overall marine fouling‐release performance among the toughened UV‐curable release coatings studied. Copyright © 2008 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.