Abstract

Abstract A series of UV curable EA-Si hybrid coatings were prepared by a simple approach combining radical and cationic photopolymerization, with epoxy acrylate (EA) as monomer, γ-glycidoxypropyltrimethoxysilane (GPTMS) as inorganic precursor, benzophenone (BP) as free radical photo initiator and a diaryliodonium salt DPIHFP as cationic photo initiator. The chemical structures of EA-Si hybrid coatings were characterized by Fourier transform infrared (FTIR), Raman spectroscopy and X-ray diffraction (XRD). The thermal and optical properties of hybrid coatings were investigated by thermal gravimetric analysis (TGA) and UV–vis transmission spectroscopy, respectively. The results indicated that cross-linked network structure of Si O Si formed in the hybrid coatings, which led to the decrease in crystallinity and of EA-Si hybrid coating. The final conversion of C C bonds was also decreased because of the addition of GPTMS. The thermal stability of EA-Si hybrid coatings was enhanced in the second decomposition stage (300–400 °C) because of the existence of organic–inorganic cross-linked network structures. The transparency of coatings at around 346 nm tended to increase with increasing concentration of inorganic precursor GPTMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call