Abstract

The study describes developing an energy-efficient and scalable alternative to conventional non-thermal plasma systems by integrating surface dielectric barrier discharge (SDBD) and UV-C radiation sources. The unprecedented enhancement in the mineralisation rate of an azo dye (brilliant red 5B) by the hybrid reactor (photo-SDBD) is demonstrated thoroughly as a function of dye concentrations, pH, and background salts. The photo-SDBD is 1.25 – 4.9 times more energy efficient than SDBD under similar experimental conditions. The photo-SDBD could overcome the problems such as the recombination of hydroxyl radicals and scavenging of radicals by salts (NaCl, Na2SO4, Na2CO3) observed in conventional non-thermal plasma systems. The TOC and HR-MS analysis establish the complete mineralisation potential and chemical mineralisation pathway. Besides, the phytotoxicity of the treated water is tested and demonstrated its utility as a liquid fertiliser for enhanced germination of mung bean seeds. The optical emission spectroscopy measurements were performed to estimate the plasma's electron temperature (1.6 ± 0.2 eV) and density (1021/m3). The emission line ratio (I763.5/I738.3) approach is used to compare the influence of UV-C on plasma parameters in the SDBD reactor. The study opens a new pathway for developing energy-efficient and scalable plasma-assisted mineralisation of complex and emerging organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call