Abstract

Bacillus endospores (spores) are generally resistant to environmental and food processing-related stress including thermal and non-thermal processing in the food industry, such as pasteurization, and UV-C inactivation. Bacillus thuringiensis insecticidal crystals and spores as the active substances in commercial biopesticides can also be introduced to vegetable foods and their food processing environment due to pre-harvest treatment of edible crops. The resistance of B. thuringiensis biopesticide spores in comparison to the genetically closely related foodborne B. cereus against heat and UV-C treatment is investigated in this study. The results show that B. thuringiensis biopesticide spores with the commercial granulated product formulation are better protected and as such more resistant to both wet heat (D values at 90 °C: 50.1–79.5 min) and UV-C treatment (D values at 0.6 mW/cm2: 7.5–8.9 min) than the pure spore suspension. The enhanced UV-C resistance properties of B. thuringiensis-formulated spores also indicate that the B. thuringiensis spores in powder or granule formulation applied in the field might not be effectively inactivated by solar radiation (UV-A and UV-B) in a short period. Furthermore, the spores of one emetic B. cereus toxin-producing strain (LFMFP 254; a Belgian outbreak strain) were found more resistant to the wet heat at 90 °C (D90-value = 71.2 min) than other tested pure spore suspensions, although the spores of B. cereus 254 did not show different behavior against UV-C treatment. This result suggests that UV-C treatment can be applied as an effective inactivation method against B. cereus 254 spores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call