Abstract
The novel multifunctional active packaging composite film with antimicrobial, antioxidant, water-vapor and UV-barrier, and corrosion resistance properties was successfully prepared from waste biomass. In this study, waste poplar sawdust was pretreated using green liquor to extract black liquor (BL). BL was then mixed with polyvinyl alcohol (PVA) solution for synthesizing silver nanoparticles (AgNPs). PVA-BL-AgNPs film was fabricated by solution casting method, and the microstructure characterization and macroscopic performance testing of the composite film were conducted. The results revealed that PVA-BL-AgNPs film exhibited inhibitory effects against Staphylococcus aureus (inhibition zone: 33.6 mm), Pseudomonas aeruginosa (inhibition zone: 31.6 mm), and Escherichia coli (inhibition zone: 32.0 mm). It could eliminate over 99 % of 2,2-diazodi (3-ethyl-benzothiazol-6-sulfonic acid) (ABTS) free radicals and provided 100 % UV-blocking, reducing light-induced food damage. It exhibited the improvement of water-vapor barrier properties and corrosion resistance. In vitro cytotoxicity assays demonstrated that no significant impact occurred on cell proliferation, confirming the safety of the film. Packaging experiments showed that PVA-BL-AgNPs film effectively inhibited milk spoilage and prolonged the shelf-life of bread and bananas. Therefore, PVA-BL-AgNPs film might extend the shelf-life of food and offer significant opportunities in addressing the issues of low safety and environmental pollution associated with traditional packaging films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.