Abstract

UV-B radiation has been previously reported to induce protective or deleterious effects on plants depending on the UV-B irradiation doses. To elucidate how these contrasting events are physiologically coordinated, we exposed sweet basil plants to two UV-B doses: low (8.5 kJ m−2 day−1, 30 min exposure) and high (68 kJ m−2 day−1, 4 h exposure), with the plants given both doses once continuously in a single day. Physiological tests during and after both UV-B exposures were performed by comparing the stress-induced damage and adverse effects on photosynthetic activity, the concentration and composition of photosynthetic and non-photosynthetic pigments, and stress-related hormones biosynthesis in basil plants. Our results showed that upon receiving a high UV-B dose, a severe inactivation of oxygen evolving complex (OEC) activity at the PSII donor side and irreversible PSII photodamage caused primarily by limitation of the acceptor side occurred, which overloaded protective mechanisms and finally led to the death of the plants. In contrast, low UV-B levels did not induce any signs of UV-B stress injuries. The OEC partial limitation and the inactivation of the electron transport chain allowed the activation of photoprotective mechanisms, avoiding irreversible damage to PSII. Overall results indicate the importance of a specific response mechanisms regulating photoprotection vs irreversible photoinhibition in basil that were modulated depending on the UV-B doses.

Highlights

  • The formation of a stratospheric ozone layer has established a kind of solar radiation filter to absorb completely harmful wavelengths such as UV-C (

  • Glossy leaves were not observed after low UV-B irradiation, and the treated plants appeared to be similar to the control ones until 48 h was reached

  • At the end of recovery period (72 h) a staining with Evans Blue, a dye that is readily taken up by dead cells was used to confirm the involvement of high UV-B dose induced cell death in O. basilicum leaves

Read more

Summary

Introduction

The formation of a stratospheric ozone layer has established a kind of solar radiation filter to absorb completely harmful wavelengths such as UV-C (

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.