Abstract
Under natural environmental conditions, excess UV-B stress can cause serious injuries to plants. However, domestication conditions may allow the plant to better cope with the upcoming UV-B stress. The leaves of Rhododendron chrysanthum are an evergreen plant that grows at low temperatures and high altitudes in the Changbai Mountains, where the harsh ecological environment gives it different UV resistance properties. Metabolites in R. chrysanthum have a significant impact on UV-B resistance, but there are few studies on the dynamics of their material composition and gene expression levels. We used a combination of gas chromatography time-of-flight mass spectrometry and transcriptomics to analyze domesticated and undomesticated R. chrysanthum under UV-B radiation. A total of 404 metabolites were identified, of which amino acids were significantly higher and carbohydrates were significantly lower in domesticated R. chrysanthum. Transcript profiles throughout R. chrysanthum under UV-B were constructed and analyzed, with an emphasis on sugar and amino acid metabolism. The transcript levels of genes associated with sucrose and starch metabolism during UV-B resistance in R. chrysanthum showed a consistent trend with metabolite content, while amino acid metabolism was the opposite. We used metabolomics and transcriptomics approaches to obtain dynamic changes in metabolite and gene levels during UV-B resistance in R. chrysanthum. These results will provide some insights to elucidate the molecular mechanisms of UV tolerance in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.