Abstract

Sunlight regulates transcriptional programs and triggers the shaping of the genome throughout plant development. Among the different sunlight wavelengths that reach the surface of the Earth, UV-B (280-315nm) controls the expression of hundreds of genes for the photomorphogenic responses and also induces the formation of photodamage that interfere with genome integrity and transcriptional programs. The combination of cytogenetics and deep-learning-based analyses allowed determining the location of UV-B-induced photoproducts and quantifying the effects of UV-B irradiation on constitutive heterochromatin content in different Arabidopsis natural variants acclimated to various UV-B regimes. We identified that UV-B-induced photolesions are enriched within chromocenters. Furthermore, we uncovered that UV-B irradiation promotes constitutive heterochromatin dynamics that differs among the Arabidopsis ecotypes having divergent heterochromatin contents. Finally, we identified that the proper restoration of the chromocenter shape, upon DNA repair, relies on the UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8). These findings shed the light on the effect of UV-B exposure and perception in the modulation of constitutive heterochromatin content in Arabidopsis thaliana.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.