Abstract

Information on the involvement of elongation-controlling hormones, particularly gibberellin (GA), in UV-B modulation of stem elongation and leaf growth, is limited. We aimed to study the effect of UV-B on levels of GA and indole-3-acetic acid (IAA) as well as involvement of GA in UV-B inhibition of stem elongation and leaf expansion in pea. Reduced shoot elongation (13%) and leaf area (37%) in pea in response to a 6-h daily UV-B (0.45 W m−2) exposure in the middle of the light period for 10 days were associated with decreased levels of the bioactive GA1 in apical stem tissue (59%) and young leaves (69%). UV-B also reduced the content of IAA in young leaves (35%). The importance of modulation of GA metabolism for inhibition of stem elongation in pea by UV-B was confirmed by the lack of effect of UV-B in the le GA biosynthesis mutant. No UV-B effect on stem elongation in the la cry-s (della) pea mutant demonstrates that intact GA signalling is required. In conclusion, UV-B inhibition of shoot elongation and leaf expansion in pea depends on UV-B modulation of GA metabolism in shoot apices and young leaves and GA signalling through DELLA proteins. UV-B also affects the IAA content in pea leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call