Abstract

Bimetallic Ag-Pt nanoparticles decorated on the surface of reduced graphene oxide (Ag-Pt/rGO) were designed and selected as a nanozyme for the assay ofhydrogen peroxide. The nanocomposites were prepared through a one-pot reduction of potassium chloroplatinate, silver nitrate, and graphene oxide under ultraviolet irradiation without using any extra chemical reducing agents or surfactants. The successful formation of Ag-Pt/rGO nanocomposites was confirmed by transmission electron microscopy, energy disperse spectroscopy mapping, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Significantly, Ag-Pt/rGO nanocomposites possessed excellent peroxidase-like activity toward the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine to form a blue product in the presence of hydrogen peroxide. Steady-state kinetics studies suggested that Ag-Pt/rGO nanocomposites had high affinity to hydrogen peroxide. Based on these properties, a convenient and sensitive method for the colorimetric determination of hydrogen peroxide was developed. Under optimal conditions, the absorbance at 652nm increases linearly in the 10-100μM and 100μM-1mM ranges of hydrogen peroxide concentration, and the detection limit is 0.9μM (S/N = 3). The method was successfully applied to the determination of hydrogen peroxide in real water samples. Graphical abstract Ag-Pt/rGO nanocomposites were prepared by a one-pot UV irradiation method and used as a novel nanozyme for colorimetric determination of H2O2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call