Abstract

SrAl2O4:(Eu,Dy) is one of the most promising mechanoluminescence materials that have potential applications in stress sensing, lighting, imaging and energy conversion. However, the ML intensity decays with the afterglow time of SrAl2O4:(Eu,Dy), which hampers its application in the real world. Here, the mechanoluminescence property of SrAl2O4:(Eu,Dy) was investigated by impact of a load. A method was proposed to overcome the drawback of the mechanoluminescence decay behavior associated with the afterglow time. During the measurement of mechanoluminescence, continuous UV irradiation on SrAl2O4:(Eu,Dy) can effectively realize steady-state mechanoluminescence that is independent of the afterglow time. The underlying mechanism is discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call