Abstract

Both absorption and scattering of light at wavelengths 410 to 610 nanometers were measured in the South Pole ice at depths 0.8 to 1 kilometer with the laser calibration system of the Antarctic Muon And Neutrino Detector Array (AMANDA). At the shortest wavelengths the absorption lengths exceeded 200 meters—an order of magnitude longer than has been reported for laboratory ice. The absorption shows a strong wavelength dependence while the scattering length is found to be independent of the wavelength, consistent with the hypothesis of a residual density of air bubbles in the ice. The observed linear decrease of the inverse scattering length with depth is compatible with an earlier measurement by the AMANDA collaboration (at ∼515 nanometers).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.